
focus 11

G

geometry management 7, 9

geometry manager 9

H

handle-event 12

I

input 11, 16

devices 11

focus 11

intrinsics 22

M

make-contact 4, 6

manage-geometry 10

manage-priority 10

O

open-contact-display 5, 18

P

packages

CLOS 22

CLUE 22

CLUEI 22

LISP 22

TICL 22

PCL 22

process-next-event 4, 11

R

resource 5, 17

binding 18

complete name 17

conversion 19

database 17

name 5, 18

types 19

root 6, 18

T

timeout 11

timer 17

W

with-event 16

X

Xt 1

28



Index

A

action 4, 12, 15

before 16

add-callback 4

add-event 12

ancestor 9

application programmer 4

apply-callback 15

B

before action 16

C

callback 4, 6, 15

function 4

name 4

change-geometry 7

change-layout 10

change-priority 8

class precedence list 13, 18

CLOS 1, 6, 8, 13, 16, 21, 22

clos-kludge 22

close-display 5, 20

CLUE 18

CLX 1, 4, 5, 6, 21, 22

composite 9

contact

application programmer interface 6

attributes 6

callbacks 6

event-translations 6

exposure 8

generic protocol 6

managed 10

name 6, 17

parent 6

sensitivity 17

standard set 22

state 6, 7, 10

top-level 6

contact programmer 4

contact-display 4, 5, 20

convert 19

D

debugging 20

defcontact 19

defevent 13

de�ne-resources 18

descendant 9

destroy 8

display 5, 8, 12

display-after-function 21

display-force-output 21

E

errors 21

event 1, 11

compression 17

dispatching 12

handling 12

loop 2, 3, 11

mask 14

side-e�ect 11

speci�cation 12, 14

synchronizing 17

user 11

event translation 4, 11

class 13

instance 13

exposure 8, 11, 12

F

27



References

[1] Bobrow, Daniel G., et al. The Common Lisp Object System Speci�cation (X3J13-88-

002). American National Standards Institute, June, 1988.

[The de�nition of CLOS. Start with Chapter 1, which is a thorough and readable ex-

planation of all concepts. Then consult with Chapter 2 for programming details.]

[2] Keene, Sonya E. Object Oriented Programming in Common Lisp. Addison-Wesley

(1989).

[A textbook-style guide to CLOS, written by a member of its ANSI development team.

Discusses all CLOS features, with examples.]

[3] McCormack, Joel, et al. The X-Toolkit Intrinsics, Version 11, Revision 2 (March, 1988).

[Xt, the C language counterpart to CLUE. This is important because CLUE will tend

to evolve in the same direction as Xt.]

[4] Scheier, Robert W. The X Window System Protocol, Version 11, Revision 3 (Decem-

ber, 1988).

[The X Bible. The de�nitive word on how X works. A reference manual with no tutorials

or examples.]

[5] Scheier, Robert W. and Gettys, Jim. The X Window System. ACM Transactions on

Graphics, Vol. 5, No. 2 (April 1986).

[An excellent technical overview of the design and features of the X Window System.

Somewhat obsolete (written before X Version 11) but still informative.]

[6] Scheier, Robert W., et al. CLX Interface Speci�cation, Version 4 (September 1987).

[Terse, but this is the de�nition of CLX. Describes only the language binding, so it

must be read in conjunction with the X Protocol Speci�cation.]

26



8. De�ne a composite class that always has a single blinker child, which is always

centered horizontally and vertically within the composite. Ensure that the blinker

child remains centered when the user changes the size of the composite.

9. De�ne an etch-a-sketch contact that will:

� Rubberband a horizontal line as the user moves the pointer with :button-1

down, then snap it into place when the button is released.

� Rubberband a vertical line as the user moves the pointer with :button-2 down,

then snap it into place when the button is released.

� Print out a copy of its current line drawing on the Imagen when the #nreturn

key is pressed.

25



Contact programmers should de�ne a separate package for each set of related contacts,

which uses either:

� LISP, CLOS, XLIB, and CLUE, (if using standard contacts), or

� LISP, CLOS, XLIB, and CLUEI.

8.3 Warming Up

Here are some CLUE calisthenics to limber you up. Some of them will require further

study of CLUE, CLX, and the X Window System. Some of them are rather challenging.

1. Complete the blinker contact example. Write a display method that will �ll the

blinker with its color when its on-p state is true and �ll it with its background

otherwise. Ensure that the blinker-on-p accessor updates the display correctly.

2. Create two blinker instances | one that will print out either \Off!" when its

:blink callback is called with a nil argument or \On!" otherwise, and another

which will make a funny noise on your Explorer only when its :blink callback is

called with a non-nil argument.

3. Try out di�erent contact attributes on your blinker. For example, try a di�er-

ent border-width, border, and background. Try initializing the background to a

'(float 0 1) value. What happened? Why?

4. De�ne resources to change initial blinker attributes.

5. Create two \funny noise" blinker instances, as in the previous exercise, but give

them di�erent funny noises. Do not change the de�nition of the blinker class.

6. Change the blinker class so that whenever the cursor enters a blinker, it turns

into a picture of Gumby. Hint: use the xfd program (font displayer) to �nd an

appropriate element of the cursor font. Another hint: Use \man xfd" to learn how

to use xfd.

7. Change the blinker class to include a string slot, containing a string which can be

displayed in any font. Display the string so that it appears in the blinker's color,

is centered horizontally and vertically within the blinker's current interior size, and

is visible regardless of the blinker's on-p state. Ensure that the string remains

centered when the user changes the font or the size of the blinker.

24



Note Make sure that before both CLX and CLUE are compiled, you

have loaded your preferred version of CLOS. If you switch

CLOS versions later, be sure to recompile both CLX and

CLUE.

3. Compile and load CLX, with the special CLUE patches with are included with the

other CLUE software. See the CLUE defsystem �le. Lisp machine users may �nd

it convenient to perform (make-system 'clx-clos).

4. Compile and load CLUE. See the CLUE defsystem �le. Lisp machine users may

�nd it convenient to perform (make-system 'clue)

8.2 Packages

All symbols de�ned by the CLUE \intrinsics" are external in the CLUEI package. The CLUE

package exports all symbols de�ned by the standard contact set, in addition to all of the

\intrinsics" in CLUEI

7

.

All symbols de�ned by CLX are external in the XLIB package. The CLUE and CLUEI

packages both use XLIB.

The package containing CLOS symbols may vary, depending on which implementation of

CLOS you are using. Usually, you will want to use the CLOS package which exports the

Explorer CLOS system.

Note If you are using the Explorer CLOS package, be sure to also use

only LISP, the standard Common Lisp package, not TICL. Us-

ing both TICL and CLOS together will result in some nasty name

collisions (for example, on make-instance and defmethod.)

Application programmers should de�ne a separate package for application symbols which

uses either:

� LISP, CLOS and CLUE, or

� LISP, CLOS, CLUEI, and a non-standard contact package.

7

For now, the standard contact set is unde�ned so using either the CLUE or CLUEI package is e�ectively

equivalent. Similarly, the CLUE speci�cation currently describes only the intrinsics and the CLUE package,

and does not yet mention the standard contact set.

23



display-after-function for \single-step" output, as shown above, can help to mitigate

this problem. But at any rate, you will need to pay careful attention to the contents of the

error reply which is printed out in CLX's error message. Sometimes, your best recourse is

to compare the error reply with the error behavior de�ned by the X Protocol Speci�cation

for the o�ending request and thereby deduce the cause of the bug.

Another useful debugging technique is to (locally) bind your contact-display and im-

portant contact objects to special variables within your program. This makes it easier

to break at a convenient point (say, while the program is idle, waiting for an event to

occur) and then examine the state of various contacts or make server requests to return

interesting data.

8 Getting Started

8.1 Building CLUE

If you're an Explorer user, you'll want to use an Explorer Release 6 load band. This band

has the latest versions of CLOS, CLX, and CLUE already built in. If this applies to you,

you can stop here | you're ready to go!

But if your system doesn't come with CLUE built in, you'll need to go through the following

procedures to get things properly loaded. Three systems need to be loaded: CLOS, CLX,

and CLUE itself. CLX needs to be loaded specially | a small patch to the standard X11

R3 version of CLX is needed to make it work with CLUE.

1. Decide which version of CLOS you want. Possible choices include:

� PCL, the Portable Common Loops implementation from Xerox that has recently

been made compatible with the CLOS speci�cation. See CLUE release notes

for more details.

� clos-kludge, a simple implementation of a CLOS subset which comes with the

other CLUE software and which is su�cient for getting started with CLUE.

See the defsystem �le in the clos-kludge directory. clos-kludge works but

beware: you should use this only as a temporary stop-gap until you have a

\real" CLOS in place.

� Something else. Maybe you've done a CLOS implementation yourself! Or

maybe you've gotten one from the vendor of your Common Lisp.

2. Compile and load your preferred CLOS.

22



(unwind-protect

(catch :event-loop

(loop

(process-next-event display)))

(close-display display))

...

One nifty thing about using this technique is that it's always safe to abort out of a damaged

program and start over.

Also, you should generally avoid binding global special variables to contact-display ob-

jects representing open server connections. It's too easy to lose track of a global variable

or, even worse, to garbage a contact-display while it's still open.

Debugging

Debugging a CLUE program (or, indeed, any program using the X Window System)

requires an awareness of a simple fact of life: client-server communication is bu�ered.

Just calling the CLX draw-line function won't necessarily cause a line to appear on the

screen. Instead, CLX places the corresponding server request into an output bu�er and

moves on; the request is sent to the server and executed later, when the output bu�er is

ushed. Normally, you don't have to worry about this because CLX will automatically

ush the output bu�er at the \right" time

6

. However, during debugging, you may want

requests to be executed immediately. There are two ways to do this.

1. Call display-force-output manually at the appropriate time.

2. Invoke (setf (display-after-function display) #'display-force-output).

This tells CLX to ush the output bu�er automatically as soon as each request is

made.

Output bu�ering also means that when a request is in error, you won't see the error

immediately. The X server reports an error by sending an error reply back to the

program (in this sense, an error reply is another kind of input \event"). The error will be

reported after the invalid request is sent to the server, but by this time, your program has

usually sent a number of other requests, too. The result? When you arrive at the error

handler, you almost never be anywhere close to the real scene of the crime. Using the

6

When the output bu�er is full and (by default) before reading the next input event.

21



6.2 Converting Resource Values

Another convenient feature of CLUE resource management is automatic resource type

conversion. Often the type of value speci�ed by the user in the resource database is not

the data type actually used by the program. For example, a user might identify a font

by a string such as \helvetica," but the program must convert this name into a CLX

font object before text is displayed. Another example is color: where a user might specify

\red," a program must somehow determine a colormap and pixel value that will yield this

hue.

CLUE automatically converts user values out of the user's resource database into the

correct target data type (as speci�ed in the :resources option of a defcontact form).

This is done by calling the convert function. For example:

(setf color (convert ; Convert a resource...

a-blinker ; ...for a blinker...

"red" ; ...from a string value...

'pixel)) ; ...to a pixel target type.

CLUE de�nes a number of convert methods for various combinations of source and target

data types. Contact programmers can extend this mechanism by de�ning their own special

convert methods.

7 Programming Tips

Managing the Server Connection

You'll get into trouble if you aren't careful to close down the X server connection when

your program terminates. The reason? Most X servers have a limit to the number of client

connections which they can serve at one time. When the limit is reached, the server simply

refuses to open any new connections, and you'll end up in the error handler staring at an

\Unable to connect" message. Make sure your program always terminates with a call to

close-display, even when it aborts unexpectedly. The best way is to put your event loop

inside an unwind-protect form:

...

20



'(paint screen-1 pattern-choice checkered font)

As you might expect when dealing with long path names like these, it's often useful to

insert \wildcards" in the places where you don't want to be so speci�c. For example, the

following resource name would refer to the font of everything in the pattern choice contact,

regardless of the screen where it appears:

'(paint * pattern-choice * font)

Another way of identifying a contact is by its object class. So, for example, you could refer

to the font of every button object in the paint program with the following resource name.

'(paint * button font)

By associating values with these sorts of resource names in resource bindings, a user

can create a resource database which represents his UI preferences. CLUE provides a

define-resources macro for adding resource bindings to the database.

(define-resources

(paint * button background) white

(paint * pattern-choice * font) helvetica-12

(paint * pattern-choice checkered label) "Checkered")

CLUE automatically reads the resource database whenever a contact is created. A contact

has a class and possibly other contact superclasses on its class precedence list. Each

such (super)class has a list of resource names that it uses (de�ned by the :resources

option of the de�ning defcontact form). Together, these form the set of contact resources

that are looked up in the resource database. Of course, �nding a resource value is rather

complicated, because names in the database may not be complete resource names and may

contain a mixture of resource names and class symbols. Nevertheless, during initialization,

CLUE will �nd the resource binding that is the closest match for each contact resource.

In general, a contact gets its resource values �rst from the user's resource database, then

from programmer-speci�ed defaults when no user value is found.

Note The contact programmer decides which values a contact will

look up in the resource database; the user decides what values

it will �nd there. The contact programmer identi�es resources

by listing them in the :resources option of the defcontact

form for his contact class.

19



6 Resources

Imagine that you are the user of an interactive program. Maybe you are not a programmer,

but there are certain things about the UI that you wish you could change ever so slightly.

For example, maybe you wish you could make the program use a di�erent set of colors

for various objects. Or maybe you're left-handed, and you'd prefer to use the right mouse

button in place of the left one. Or maybe you can't read Japanese, which happens to be

the language all the menu items are written in. Although most of the UI is de�ned by

programmers | contact programmers who designed the various UI objects and application

programmers who placed them neatly on the screen | the truth is that some aspects of

the UI ought to be up to the user. Programmers, keep your hands o�!

Nowadays, thoughtful UI programmers recognize this problem, so CLUE allows program-

mers and users to cooperate in de�ning the UI. The basis for this cooperation is resource

management. A user can store various UI values as resources in a resource database,

and CLUE contacts can read these resource values and modify the UI accordingly.

6.1 The Resource Database

Before a user can assign a resource value to a particular UI object, he must have a way of

identifying it, some kind of name which can be referenced outside of the program which

creates the object. Remember that a contact has a name slot; this is a symbol that could

certainly help identify the contact. Consider also that a contact is generally part of a

nested hierarchy of UI objects. For example, a paint program might have pattern choice

contact which contains several button contact children, one for each available pattern style.

A more complete name for a button child would be a list which also includes its parent's

name, e.g. '(pattern-choice checkered). We can extend this notion all the way up

the hierarchy to come up with a complete resource name for the checkered pattern

button. This would be a list of resource name symbols, starting with the resource name for

the program itself (i.e. the required argument to open-contact-display) and continuing

with symbols for the root ancestor, the top-level ancestor, and so on:

'(paint screen-1 pattern-choice checkered)

Assuming that the checkered button has a resource for its label string named label

and another resource for the label font named font, then the complete names for these

resources would obviously be:

'(paint screen-1 pattern-choice checkered label)

18



(defmethod beep ((contact blinker) &optional (per-cent-volume 0))

(with-event (state)

;; Was the shift key down?

(when (member :shift (make-state-keys state))

;; Ring server's chime!

(bell (contact-display contact) per-cent-volume)

;; Invoke callback

(apply-callback contact :beep))))

The beep action will beep only if it determines that the shift key was down when the

event occurred. It does this by examining the state slot of the event, which de�nes which

modi�er keys were pressed at the time of the event. Notice the use of the with-event

macro. This is similar to the with-slots macro of CLOS. with-event binds slots of the

\current" event argument within its lexical extent, so that the action code can refer to

them. But why is the current event object hidden in this way? Because this allows for

a much more e�cient implementation of event objects than would be possible if their

structure was fully exposed to programmers. So, there!

5.4 Advanced Input

Input events are a subject so dear to the heart of CLUE that it contains many more

input programming functions than can be covered in this guide. Here's a quick list of

CLUE's special input features, all of which are discussed in complete detail in the CLUE

speci�cation.

� Before actions, action functions which can be set to execute for every event dis-

patched to a contact of a certain class, before event translation begins.

� Timers, which send special :timer events to a contact at a regular, speci�ed rate.

� Synchronizing event processing, so that a program can stop to process all pending

events before continuing.

� Sensitivity, which allows a contact's input to be temporarily \switched o�" without

changing its visibility.

� Event compression, which removes certain redundant events for faster perfor-

mance.

17



(display contact)

;; Invoke callback with new state

(apply-callback contact :blink on-p))

In general, an action represents a well-de�ned contact behavior that could be done in

response to any event. In fact, it's possible to personalize an existing UI by modifying its

event translations so that contact actions are rebound to the types of events (i.e. event

speci�cations) which are more to your taste. In some cases, however, an action may be

designed to handle a very speci�c event type.

When an action computes a result that is important to an application, it invokes a callback.

This is done via the apply-callback macro. The example above shows that a blinker

contact has a callback whose name is :blink, which is called with a single argument,

i.e. a boolean representing the new on/o� state of the blinker. What signi�cance this

has to the application is unknown to the contact programmer who wrote this action; it all

depends on what callback function the application programmer has associated with :blink

for this blinker instance. In fact, the application programmer may have decided not to

de�ne a callback function for :blink, in which case :blink has no application meaning

at all (and apply-callback simply does nothing). As shown in the :blink example,

apply-callback is usually (although not necessarily) called directly by an action method

or somewhere within its dynamic extent.

Note Callback names are shared by a class, i.e. referenced by the

class's action methods. But callback name/function pairs are

instance data and are recorded in a contact's callbacks slot.

In our example, every blinker is expected to have a :blink

callback function, but each blinker usually has a di�erent

:blink callback function. That is, each blinker usually has

di�erent application semantics.

In the previous example, the blink action method does not depend on the event which

causes it to be invoked. But what happens when an action's behavior depends on informa-

tion contained in the event? CLUE handles this by representing an event as an instance

of the event class. An event object has slots which contact various kind of interesting

information about the event. Since there are many types of X events, there are many

di�erent event slots, even though for a given event some slots are irrelevant and therefore

have a nil value. You can look in the X Protocol Speci�cation for a complete description

of event slots (and look in the CLX speci�cation to �nd out how these slot values are

represented in Lisp).

But how does an action access an event object? This is done by using a special CLUE

macro called with-event. For example:

16



(:motion-notify ; Matches a :motion-notify event..

:button-1) ; ...if :button-1 is down.

(:button-press ; Matches a :button-press...

:button-1 ; ...if it's :button-1...

:shift) ; ...and the shift key is down.

(:button-release ; Matches a :button-release...

:button-3 ; ...if it's :button-3...

(:shift :control) ; ...and the shift,control keys are down...

:all) ; ...and all other modifiers are up.

(:key-press ; Matches a :key-press...

:any ; ...for any key...

(:control :hyper)) ; ...when the control,hyper keys are down.

(:button-press ; Matches a :button-press...

:button-3 ; ...if it's :button-3...

:double-click) ; ...and it's a double-click.

Note A contact will receive only the types of events described by

its event speci�cations, i.e. by event speci�cations in its in-

stance and class event translations. CLUE automatically sets

the event mask of the contact window, based on the contact's

event speci�cations. Event masks are a detail of CLUE inter-

nals, but you can �nd more information about them in the X

Protocol Speci�cation and the CLUE speci�cation.

5.3 Actions and Callbacks

An action is a function which is designed to handle an input event. An action therefore

implements a particular input behavior exhibited by each instance of a certain contact

class. In fact, an action function is typically a CLOS generic function, and actions usually

are de�ned as methods of a particular contact class.

(defmethod blink ((contact blinker) blink-on-p)

(with-slots (on-p) contact

;; Set internal state variable on/off

(setf on-p blink-on-p)

;; Redisplay based on new on-p state

15



Note that in place of a simple action name, an event translation can also give a list

containing the action name plus a list of arguments to pass. The process of event translation

starts with the instance event translations in the event-translations slot of the receiving

contact. Each entry is examined in order, until a match is found. What happens if no

match is found? In this case, the process continues to search the event translations de�ned

by the defevent macro.

defevent creates a class event translation that applies to every instance of a given

class. A class event translation says \When an event is dispatched to a contact of this

class and it matches this event speci�cation, then call these actions."

(defevent blinker ; When any blinker gets...

(:button-press :button-1) ; ...this button event...

(blink t)) ; ...blink on.

(defevent blinker ; When any blinker gets...

(:button-release :button-1); ...this button event...

(blink nil)) ; ...blink off.

Class event translations are searched for each contact superclass of the receiving contact,

starting with the class of the contact, then continuing back up the class precedence list

which this contact inherits

5

. The idea is to match a class event translation for the most

speci�c class possible. However, if a matching event translation is still not found, then

CLUE gives up, and the event is ignored. After all this, it couldn't be a very important

event anyway!

5.2 Event Speci�cations

As you may have noticed, an event speci�cation is usually a list composed of an event

type keyword and some other quali�ers. In fact, an event type keyword alone is also a

valid event speci�cation. The exact syntax for event speci�cations is fairly complex. A

sophisticated programmer can even de�ne his own event speci�cation syntax. All of this

is completely spelled out in the CLUE speci�cation. But for now, you can get an idea of

what an event speci�cation is by looking at the following examples.

:enter-notify ; Matches any :enter-notify event

5

See the CLOS speci�cation for a precise de�nition of the class precedence list.

14



is fairly easy because almost every event message contains an identi�er for the window

object which is the \addressee" of the event. CLUE knows how to convert this identi�er

into the corresponding contact object. At this point, the event is handled by calling

the handle-event function with the receiving contact and the event as its arguments.

handle-event then implements the process of event translation, i.e. �guring out which

methods of the receiving contact to call in response to the event

4

. What happens next is

of interest only to contact programmers.

5.1 Event Translation

Event translation involves searching through one or more association lists, looking for an

entry that matches the event. Each such entry is called an event translation, and it

is a list containing an event speci�cation and one or more action names. An event

speci�cation describes a certain sort of event, and an action name is simply the name of

a special kind of function | an action function. So, during event translation, the event is

compared with an event speci�cation, and when it matches, then each of the corresponding

action functions are invoked in sequence. When all of them have completed, then event

translation is done; handle-event returns and the event is said to be \handled." The

process-next-event function also returns, and we go back to the top of the event loop to

deal with the next event. But where are these event translations and how are they created?

There are two di�erent ways to create event translations: the add-event function and the

defevent macro.

add-event creates an event translation and adds it to the association list found in the

event-translations slot of a speci�c contact. This kind of event translation is thus an

instance event translation which a�ects only one contact instance. An instance event

translation says \When an event is dispatched to this contact and it matches this event

speci�cation, then call these actions."

(add-event a-blinker ; When this contact gets...

'(:key-press #\ctrl-b) ; ...this character event ...

'beep) ; ...call the beep action.

(add-event a-blinker ; When this contact gets...

'(:key-release #\ctrl-b) ; ...this character event ...

'(beep 1)) ; ...call the beep action with an arg.

4

handle-event is also the function which automatically calls the contact's display method, if the event

is an :exposure.

13



actions, for example, can generate :key-press and :key-release events. The pointer

may be used to generate :button-press and :button-release (when the user presses

one of the mouse buttons) and :motion-notify events (when the user changes the pointer

position). These kind of user events contain data for the button or key involved, the

coordinates of the pointer position, and other useful things, such as the up/down state of

:shift, :control, and the other modi�er keys. In addition to user events, there is another

important group of side-e�ect events, events which occur as an indirect result of other

user actions. For example, when the user causes part of an obscured window to become

visible, an :exposure event may be sent. Other side-e�ect events include :enter-notify,

which signi�es that the user has moved the pointer cursor inside a particular window,

and :focus-in, which happens when the user has identi�ed a particular window as the

focus for keyboard events. This is just the beginning, but the de�nition and meaning

for all of the events received by CLUE contacts can be found by reading the X Protocol

Speci�cation.

To understand CLUE event processing, let's start with the basic program event loop and

follow its operation, step by step. A call to process-next-event gets the ball rolling.

process-next-event causes CLUE to read the next event from the given contact-display

connection. By default, process-next-event does not return until the next event has been

completely processed. This means that if no event is yet available, then process-next-event

will generally wait until one �nally comes along. However, an optional timeout argument

may be given, which says how long process-next-event will wait before giving up. Set the

timeout to 0 if you don't want process-next-event to wait at all. process-next-event

returns nil if a timeout occurred; otherwise, it returns t.

(catch :event-loop

(loop

(unless

(process-next-event display 5) ; Timeout after waiting 5 sec.

;; No events yet -- do something useful

(do-background-task))))

Note process-next-event does not return any result of the actual

processing of an event. This means that all responses of a

CLUE program to user input | even the termination of the

event loop | occur as \side-e�ects" of contact event handling.

Always escape the event loop by throw'ing to some well-de�ned

tag.

Inside process-next-event, the next thing that happens is that the event is dispatched.

In other words, CLUE �gures out which contact is supposed to handle the event. This

12



asking its geometry manager to become bigger, leading to a ripple of geometry changes

throughout the contact hierarchy.

How do you know if a contact is managed? This is determined by its state. A contact

is managed if and only if its state is not :withdrawn. This means that a :mapped (and

viewable) contact is managed. But there is also another possibility: a contact's state may

also be :managed. This value represents the (rather rare) case of a contact which is not

visible, but which is nevertheless taken into account by its geometry manager.

Note An unmanaged child can never be visible.

Implementing geometry management is a topic for contact programmers only. If you de�ne

a new composite subclass, you will usually need to implement methods for the following

three functions.

� change-layout: This function is called whenever a composite's set of managed chil-

dren changes (e.g. by creating or destroying a managed child or by changing the

state of a child).

� manage-geometry: This function is called by change-geometry to approve a geome-

try request. It must either approve the change or return a set of alternative geometry

values which will be acceptable.

� manage-priority: This function is called by change-priority to approve a stacking

priority request. It must either approve the change or return an alternative priority

which will be acceptable.

5 Events

Handling input events is CLUE's main job, and it's an area where CLUE does a lot of the

work for programmers automatically. Application programmers don't have to worry about

much more than setting up an event loop, as shown in Section 1.4. Contact programmers

need to know how to use CLUE's event translation mechanism in order to implement

the details of a contact's input behavior.

What exactly are these events we're talking about? Fundamentally, an event is a message

to the program from the X server, a packet of data describing some occurrence that the

program ought to be interested in. Most events represent an action performed by the

user with the X server's keyboard or pointing device (i.e. mouse, tablet, etc.). Keyboard

11



4 Composites and Geometry Management

A contact which is the parent of another contact is known as a composite and is an

instance of the composite subclass of contact objects. A composite may be the parent

of another composite, leading to a tree-structured contact hierarchy. A contact is said to

be an ancestor of another contact (its descendant) when it is its parent or an ancestor

of its parent.

A composite represents a set of contacts which can be manipulated (positioned, presented,

etc.) as a unit. A composite is useful whenever several contacts act in concert to provide a

single component of the UI. Typical examples include \control panels" and \dialog boxes"

| groups of contacts that are presented together and are used to make related adjustments

to application data. The fundamental aspects of the contact parent-child relationship are

the same as those of the window hierarchy de�ned by the XWindow System. But in CLUE,

a composite is also expected to act as the geometry manager for its child contacts; that

is, to implement a style of layout for its children.

Here is how it works. A request to change the geometry of a contact is forwarded to

the contact's parent, which actually performs the resulting change. It is important to

understand that, due to its constraints, a geometry manager may not be able to perform

a change as requested. For example, a request to increase the size of a contact might be

refused if its geometry manager enforces a maximum size. Even if a requested change

cannot be done, a geometry manager may be able to suggest a slightly di�erent change

which would be acceptable.

Placing geometry control in the hands of a geometry manager in this way has several

advantages.

� A geometry manager can arbitrate the competing geometry change requests of several

contacts in order to implement contraints among them.

� A given layout style can be applied to any collection of contacts.

� Contact layout style can be changed without the knowledge of individual contacts.

A composite's geometry management policy applies only to the set of its children which

are managed. An unmanaged child is ignored by its geometry manager. Any geometry

change to an unmanaged child is performed immediately as requested. However, changes

to a managed child are arbitrated by its parent's geometry management policy. This can

mean, for example, that a change to one child's position/size/priority can a�ect that of

other children. Indeed, requesting a bigger size for a child might result in the parent

10



In addition to the generic protocol, the application programmer interface to a contact

includes its callback protocol, plus any special class-dependent functions (typically, for

initialization).

3.2 De�ning Contacts

If you are a contact programmer, you will use the defcontact macro to de�ne a new

contact class. The syntax of defcontact is nearly identical to that of the basic CLOS

defclass macro. The only di�erence is the additional :resources option for specifying

contact resources (see Section 6).

(defcontact

blinker ; Class name

(contact) ; Superclasses

((color ; Slot specs, with name...

:type pixel ; ...data type...

:accessor blinker-color ; ...accessor function name ...

:initarg :color ; ...initarg keyword for make-contact...

:initform 0) ; ...and default initial value.

(on-p

:type boolean

:accessor blinker-on-p

:initform nil))

(:resources color)) ; Resource specs

A contact programmer must also de�ne a display method for a new contact class. CLUE

calls the display function automatically whenever any portion of the contact image must

be (re)displayed. In particular, display is called whenever an invisible contact is changed

to the :mapped state, or when some previously-hidden part of a :mapped contact is exposed.

(defmethod ; Define a method ...

display ; ... for the display function...

((contact blinker) ; ... when the contact arg is a blinker.

&optional x y width height) ; Defines the rectangular piece exposed.

...)

9



(make-contact

'blinker ; Make an instance of the blinker class

:parent display ; Required argument

:width 300 ; Usually required

:height 400 ; Usually required

:background 0)) ; Optional, defaults to parent's

The (setf contact-state) function changes the state value of the contact.

(setf (contact-state a-blinker) :mapped) ; Make it viewable

(setf (contact-state a-blinker) :withdrawn) ; Make it invisible

change-geometry requests a change to one or more components of the contact's geometry.

The keyword arguments to change-geometry | x, y, width, height, and border-width

| specify the changed component(s); omitting a keyword means \Leave the current value

unchanged." But the actual e�ect of the request depends on the geometry management

policy applied to the contact (See Section 4). If the request is refused, then the return

values give acceptable alternatives for x, y, width, height, and border-width. You may

want to give an accept-p keyword value of t, which means \Go ahead and replace my

request with whatever alternative geometry may be returned."

(change-geometry a-blinker

:x 100 ; Request new upper-left position...

:y 200

:accept-p t) ; ...but accept closest alternative

(change-geometry b :accept-p t) ; Just validate current values

Note There are no accessor functions for setf'ing a contact's x, y,

width, height, and border-width slots. Never modify these

slots directly. Always use change-geometry instead.

The change-priority function requests a change to the contact's stacking priority relative

to other windows. The stacking priority determines which window is \on top" of other

windows. This request is also subject to geometry management policy.

The destroy function is called only when the contact will no longer be referenced. This

frees any display resources allocated to the contact.

8



always visually contained by its parent window, and its position is speci�ed relative

to its parent's upper-left corner. However, in CLUE this relationship is extended,

with the parent assuming additional responsibilities, such as geometry management

(see Section 4).

� state: A switch which controls the visual e�ect of the contact on the UI. If the

state is :withdrawn, then the contact is invisible and unavailable for input. If the

state is :mapped, then the contact is \viewable" (i.e. visible unless it is covered by

other windows) and available for input. The state can also have a third value |

:managed | which is discussed in Section 6. The default state is :mapped.

� event-translations: A list which associates di�erent types of input events with

contact actions. This is discussed in more detail in Section 5.

� callbacks: An association list of callback name/function pairs.

3.1 Using Contacts

If you are an application programmer, your basic view of a contact | the generic contact

protocol | is quite simple and consists of only a few functions.

make-contact creates a new instance of any contact subclass. This function is a syntacti-

cally-identical extension of the basic CLOS make-instance function. Keyword arguments

to make-contact provide initial slot values for the new instance, most of which can be

defaulted. However, a parent argument must be given; specifying a contact-display as

the parent creates a top-level contact.

Note A contact \belongs" to the contact-display connection on

which it is created. More precisely, since a contact must have

a top-level ancestor, it belongs to the contact-display given

as this ancestor's parent. This contact-display connection

receives all requests and events related to the contact; it is also

available as the value of the contact's display slot.

Usually (and always for top-level contacts), you must also specify the contact's width and

height. A non-top-level contact may �nd that its initial values for x, y, width, height,

and border-width have been modi�ed by the geometry management policy of its parent

(see Section 4).

(setf a-blinker

7



contact-display objects are really a subclass of the display data type de�ned by CLX

2

.

Note Any CLX function which takes a display argument can be

called with a contact-display argument instead.

The CLX function close-display should always be used to close the server connection

when the program terminates.

3 Contacts

In simplest terms, a contact is a kind of window. The behavior of a window object, which

is represented in CLX as an instance of the window data type, is completely speci�ed by

the X Window System protocol. In CLUE, the class of contact objects is de�ned to be

a subclass of the class of window objects

3

. Thus, all CLX window functions apply to any

contact.

Note Any CLX function which takes a window argument can be

called with a contact argument instead.

As a window, a contact inherits several basic attributes, such as a rectangular geometry

(given by the position of its upper left corner, its width, and its height in pixel coor-

dinates), a border width and border color/pattern, a depth (i.e. bits per pixel), and a

background color/pattern. Contacts possess a few additional attributes (or slots) not

shared by ordinary windows.

� name: The name of the contact is a symbol which can be used to access contact

resources stored in a resource database. See Section 6.

� parent: All contacts have a parent contact (except for a root contact, which is

created automatically by CLUE and which is the ancestor of all contacts on a single

display screen). The parent-child relationship is fundamentally one between two

windows, as de�ned by the X Window System. For example, a child window is

2

However, neither display objects nor contact-display objects are actually implemented as CLOS

classes. There's no reason to de�ne contact-display methods or subclasses.

3

To do this, CLUE actually changes the de�nition of the CLX window type to make it a CLOS class.

6



lists to the associated callback functions have to be. The application programmer de�nes

callback functions to perform speci�c jobs and plugs them into the appropriate contact

callback. The contact programmer will frequently use the basic CLX interface, typically to

display the contact's information. The application programmer will use CLUE interfaces

but will almost never need to call CLX functions directly.

Now we can see the operation of a CLUE program in a bit more detail. The make-contact

function is used to create and initialize contacts. The add-callback function associates

application semantics (i.e. callback functions) with each contact. Then, the program

enters the event loop. Each call to process-next-event reads the next input event and

dispatches it to the contact to which it belongs. This contact then goes through a process

of event translation, which determines which contact action functions will be executed.

Contact action functions, in turn, perform all the details of input feedback and display.

Finally, if the user event has completed an application result, the action function will look

up and call the associated callback function. What has happened? CLUE has provided

all the machinery, the contact programmer has de�ned the detailed UI behavior, and the

application programmer has furnished the real results.

The rest of this guide will be a closer look at each of these parts of a CLUE program.

2 The Contact Display

A contact-display is created by the open-contact-display function. open-contact-

display has one required argument: a symbol which acts as the name of your program.

Technically, this is a resource name which is used to access the values of resources as-

sociated with your program. CLUE resource management is explained later in Section 6.

Generally speaking, this program resource name is used to distinguish your program from

other application programs that may also be running. open-contact-display has several

optional keyword arguments (mainly the same ones used by the CLX open-display func-

tion), but the most frequently used is the host, a string which gives the network name for

the X server host to which you are connecting.

(setf display

(open-contact-display

'blink ; Application name

:host "server-host")) ; Server host name

5



events which are directed to it and for translating these into the appropriate application

responses.

1.4 How CLUE Works

CLUE combines all of these ideas. A CLUE program consists of an event loop, a set of UI

objects called contacts, and a set of application functions called callbacks. All CLUE

programs look pretty much like this:

;; Open a connection to the X server.

(let ((display (open-contact-display 'my-application :host "server-host" ...)))

;; Initialize UI objects and callbacks.

(setf c (make-contact ... ))

(add-callback c ... )

...

;; Process events until the event loop is terminated.

(catch :event-loop

(loop

(process-next-event display)))

(close-display display))

A CLUE program creates a contact-display object which represents a connection to a

speci�c X server. This contact-display then becomes a two-way channel through which

the program requests the creation and display of contact windows and receives input events

sent to its contacts.

Each contact is a UI \agent" that is prepared to present some application information, to

accept user events which manipulate this information, and then to report the results back

to the application. This reporting action is the critical connection between the UI and the

application, and it's done using callbacks. A callback consists of a callback name and

an associated callback function. A contact is programmed to associate a speci�c result

with a callback name, which it reports by calling the associated callback function (with a

prede�ned argument list).

Here is where CLUE contributes to the separation of UI and application. Every CLUE

program usually has two programmers! A contact programmer is one who de�nes a

contact class and implements its methods. An application programmer is one who

decides to create a contact instance and employ it for a particular UI role. The contact

programmer decides what callback names his contact class will use and what the argument

4



whether I write to you, because these are merely two di�erent lexical forms (e.g. sound

patterns or marks) for the same language. Also, you can express the same idea either in

French or in English; the lexical and syntactic elements of each language are distinct from

their corresponding meaning, or semantics.

An interactive application can be modularized along the same lines. The UI contains the

lexical and syntactic components, while the application per se is the semantic component.

Take some application command, say, \Stop Nuclear Reactor." The user interface to this

command could use various lexical forms (press the STOP key or type the string \stop") and

various syntactic forms (prompt with \Are you sure you want to stop?" or not), but

the application semantics remain the same (hopefully!). From here on, we will acknowledge

this modularization by referring to the whole application program as \the program," to

the user interface components as \the UI," and to the application semantic components

as \the application."

Separating the UI and semantic modules of an interactive program is good programming

technique. This allows you to more easily create a new UI for an existing application. Or

to apply an existing set of UI techniques to a new application, so that it is consistent in

style with others. Or to divide the programming e�ort more e�ciently; a domain expert

can write the application semantics while a human factors specialist can design the UI and

a window system hacker can implement it.

1.3 The UI Is Object-Oriented

This idea is more recent than the other two, because it wasn't until a few years ago that

graphical user interfaces and window systems came along. When they did, UI's began

to be composed of multiple user activities represented by visually-distinct and physically-

manipulable objects on the screen. Object-oriented programming (OOP) is thus a natural

programming style which has been associated with UI since its beginning

1

. For several

reasons, OOP is a nice �t for UI programming. UI's tend to generate profuse variation

of detail around a basic theme (consider, for example, menus); that is, they demonstrate

several subclasses of a basic class. The modularity of objects also helps to separate the UI

from the semantics; that is, the implementation of UI methods from the program which

simply calls them.

The OOP methodology leads to a UI which is composed of user interface objects (command

lines, messages, menus, scroll bars, dialogs, etc.). Each of these UI objects is an \agent" for

some portion of the underlying application. Each UI object is responsible for presenting

some \view" of the application to the user. It is also responsible for receiving the users

1

In fact, true OOP and window systems were invented at the same time at Xerox PARC in the Smalltalk

system.

3



System which extends (but does not supersede) the basic CLX interface. CLUE is also an

object-oriented programming system based on the Common Lisp Object System (CLOS).

Moreover, CLUE is a \toolkit" for constructing X user interfaces. As a result, CLUE is

modelled closely on the standard toolkit used by C programmers, commonly known as Xt,

or the X Toolkit.

All of these related systems are described in separate documents (these references are listed

at the end of the guide), but we won't spend much time on them here. Read this guide

and take the plunge into CLUE; you can dry o� with the details later.

1 The Big Picture

Before you can understand CLUE, you have to look at three ideas about how to build an

interactive application.

1.1 The Application Is Event-Driven

An interactive application is controlled by a human user. Typically, nothing happens until

the user lifts his �nger to the side of his mouse and causes an input event. There are two

implications here.

First, the fundamental application control structure is an event loop: wait for an event,

�gure out how to handle it, process the event, then go back and wait for the next one.

The structure of the event loop is generic; there is nothing application-speci�c about it.

Second, the application is passive. It knows how to do certain things, but it's waiting for

the user's command to do them. You can imagine programs that do things on their own,

without waiting for user instruction (for example, a nuclear reactor control system). But,

the interactive part of such a program is still an event loop, which must synchronize with

the separate background task(s) to provide the user control.

1.2 The UI Is Separate

The user interface part has nothing to do with the essential function of the application. An

oft-cited analogy is linguistic communication, which has independent modules for lexical,

syntactic, and semantic processing. You can understand me whether I speak to you or

2



A Quick and Dirty Guide to CLUE

Kerry Kimbrough

Version 6.0

July, 1989

c

1989 Texas Instruments Incorporated

Permission is granted to any individual

or institution to use, copy, modify and

distribute this document, provided that

this complete copyright and permission

notice is maintained, intact, in all copies

and supporting documentation. Texas

Instruments Incorporated makes no rep-

resentations about the suitability of the

software described herein for any pur-

pose. It is provided \as is" without ex-

press or implied warranty.

This guide is a no-frills introduction to programming with the Common Lisp User Interface

Environment (CLUE). CLUE is a high-level programming interface to the X Window

1


